Biofilm control in water by a UV-based advanced oxidation process.
نویسندگان
چکیده
An ultraviolet (UV)-based advanced oxidation process (AOP), with hydrogen peroxide and medium-pressure (MP) UV light (H(2)O(2)/UV), was used as a pretreatment strategy for biofilm control in water. Suspended Pseudomonas aeruginosa cells were exposed to UV-based AOP treatment, and the adherent biofilm formed by the surviving cells was monitored. Control experiments using H(2)O(2) or MP UV irradiation alone could inhibit biofilm formation for only short periods of time (<24 h) post-treatment. In a H(2)O(2)/filtered-UV (>295 nm) system, an additive effect on biofilm control was shown vs filtered-UV irradiation alone, probably due to activity of the added hydroxyl radical (OH•). In a H(2)O(2)/full-UV (ie full UV spectrum, not filtered) system, this result was not obtained, possibly due to the germicidal UV photons overwhelming the AOP system. Generally, however, H(2)O(2)/UV prevented biofilm formation for longer periods (days) only when maintained with residual H(2)O(2). The ratio of surviving bacterial concentration post-treatment to residual H(2)O(2) concentration played an important role in biofilm prevention and bacterial regrowth. H(2)O(2) treatments alone resulted in poorer biofilm control compared to UV-based AOP treatments maintained with similar levels of residual H(2)O(2), indicating a possible advantage of AOP.
منابع مشابه
Biofilm control in water by advanced oxidation process (AOP) pre-treatment: effect of natural organic matter (NOM).
The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H₂O₂/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H₂O₂/UV prevented...
متن کاملAdvanced Oxidation Process for Haloacetic Acid Removal in Tehranpars Water Treatment Using CuO Nanocatalyst
Potentially harmful disinfection byproducts (DBPs), as a significant challenge in water treatment, are formed when oxidizing disinfectants react with natural organic matters (NOM). Unfortunately, an unwanted side effect is the formation of harmful by-products, such as THMs and HAAs, following the chlorination stage. DBPs cause a variety of diseases like cancer in humans. In this ...
متن کاملبررسی کارایی فرایند اکسیداسیون پیشرفته بر پایه پرسولفات (UV/Na2S2O8) برای حذف مترونیدازول از محلولهای آبی
Background and purpose: Antibiotics are extensively used in treatment of diseases. Metronidazole is an antimicrobial agent and is a nitroimidazole derivative, which is widely used in treatment of infectious diseases caused by bacteria and protozoa. This compound is irrefrangible, toxic, carcinogenic, mutagenic, and has high solubility in water. Advanced oxidation process is an effective method ...
متن کاملImproving the efficiency of advanced photocatalytic oxidation process in the presence of sulfite for decomposition of metronidazole from aqueous solutions
Metronidazole antibiotic is belong to the nitroimidazole family. Non degradability, high solubility in water, toxicity, carcinogenicity and mutagenicity are important concerns related to antibiotics. Therefore, the aim of this study is to apply the new advanced oxidation process of UV/zinc oxide/sulfite (UZS) to degrade metronidazole from aqueous solutions. Methods: In this study, the effect o...
متن کاملUV/ H2O2 Advanced Oxidation Process for Simultaneous Removal of NO and SO2: A Review
This study presents a review on advanced oxidation processes (AOP) for simultaneous removal of NO and SO2. AOP is based on using a strong oxidant such as ozone and H2O2 which is able to generate highly reactive intermediates. The pollutant will be oxidized and removed by these intermediates. In recent years, AOP has been considered as an effective and attractive technology in the field of flue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biofouling
دوره 27 3 شماره
صفحات -
تاریخ انتشار 2011